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ABSTRACT

There is substantial evidence that the prevalence of vitamin D deficiency is unacceptably high in the population, and this requires action from a

public health perspective. Circulating 25-hydroxyvitamin D [25(OH)D] is a robust and reliable marker of vitamin D status and has been used by

numerous agencies in the establishment of vitamin D dietary requirements and for population surveillance of vitamin D deficiency or

inadequacy. In a wider context, modeling of serum 25(OH)D data and its contributory sources, namely dietary vitamin D supply and UVB

availability, can inform our understanding of population vitamin D status. The aim of this review is to provide the current status of knowledge in

relation to modeling of such vitamin D–relevant data. We begin by highlighting the importance of the measurement of 25(OH)D and its

standardization, both of which have led to new key data on the prevalence of vitamin D deficiency and inadequacy in North America and Europe.

We then overview how state-of-the-art modeling can be used to inform our understanding of the potential effect of ergocalciferol and 25(OH)D

on vitamin D intake estimates and how meteorological data on UVB availability, when coupled with other key data, can help predict population

serum 25(OH)D concentration, even accounting for seasonal fluctuations, and lastly, how these in silico approaches can help inform policymakers

on strategic options on addressing low vitamin D status through food-based approaches and supplementation. The potential of exemplar food-

based solutions will be highlighted, as will the possibility of synergies between vitamin D and other dairy food–based micronutrients, in relation

to vitamin D status and bone health. Lastly, we will briefly consider the interactions between season and vitamin D supplements on vitamin D

status and health. Adv Nutr 2017;8:947–57.
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Introduction
The major source of vitamin D in humans is the UVB com-
ponent of sunlight; UVB radiation stimulates cutaneous
synthesis of vitamin D3 (cholecalciferol), which undergoes

hydroxylation in the liver to 25-hydroxyvitamin D [25(OH)D]
(1). Several environmental factors, such as latitude and pre-
vailing weather conditions, determine whether UVB of suf-
ficient strength is available to stimulate the conversion of
7-dehydrocholesterol in the skin to precholecalciferol (2).
Personal attributes, such as skin pigmentation, age, clothing,
working environment, physical activity, sunscreen use, and
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sun exposure behavior, can also much reduce, if not prevent,
cholecalciferol synthesis (2). Vitamin D also occurs in the
diet, both naturally and as a fortificant, as cholecalciferol and
vitamin D2 (ergocalciferol) and in nutritional supplements.

The well-known late-winter nadir in circulating 25(OH)D
concentrations means that substantial portions of the pop-
ulation resident at latitudes greater than ;408 rely on
body stores and vitamin D in the diet to maintain healthy
vitamin D status all year. Because body stores are dependent
on sun exposure, the importance of the diet in maintaining
vitamin D status above the level of deficiency is a corollary of
UVB sunlight deficit (3). There is increasing evidence that
the dietary supply is currently unable to offset the seasonal
sunlight deficit, which increases with latitude and the dura-
tion of winter (4). There are very few rich natural sources of
vitamin D; these are oily fish and cod liver oil (which are
consumed sporadically), egg yolk, fortified foods, and
UV-exposed mushrooms or UV-irradiated yeast, in which
ergocalciferol is found. Food consumption surveys through-
out Europe, Canada, the United States, and beyond have all
consistently reported low vitamin D intake and widespread
dietary inadequacy (4).

This review is based on 4 vitamin D–related presentations
from Session Vof the 4th International Vitamin Conference
held in Copenhagen, Denmark, 25-27 May 2016. We begin
the review by highlighting the importance of measurement
of circulating 25(OH)D and its standardization, both of
which have led to new key data on the prevalence of vitamin
D deficiency and inadequacy. We then provide an overview
on how state-of-the-art modeling can be used to inform our
understanding of the potential effect of the minor vitamer
andmetabolite of vitamin D in the food chain [i.e., ergocalciferol
and 25(OH)D, respectively] on vitamin D intake esti-
mates and of how changes in estimates in overall vitamin D
intake, in the presence and absence of UVB availability, ef-
fects population serum 25(OH)D concentrations. This is im-
portant in terms of informing food-based approaches toward
improving vitamin D status and preventing vitamin D defi-
ciency. The potential of exemplar food-based solutions for
addressing low vitamin D status, such as vitamin D–biofortified
foods as well as traditional vitamin D fortification of more
novel dairy-based foods, will be highlighted, and the possibility
of synergies between vitamin D and other naturally present mi-
cronutrients present in dairy foods will be explored. Lastly, we
briefly consider interactions between seasons and vitamin D
supplements on vitamin D status and health.

Current Status of Knowledge
25(OH)D as a marker of vitamin D status and its
assessment
There is consensus that serum or plasma 25(OH)D concen-
tration should be used to assess vitamin D status because it
reflects the contributions from both diet and synthesis in the
skin (1, 5). A systematic review of existing and potentially
novel functional markers of vitamin D status reported that
serum 25(OH)D concentration increased in response to
supplemental vitamin D intake in all the included randomized

controlled trials (RCTs), irrespective of whether ergocalcif-
erol or cholecalciferol was used, differing analytical tech-
niques, study duration (6 wk to >2 y), or age group of the
participants (6). Serum or plasma 25(OH)D concentration
was used as an indicator of vitamin D status by the Institute
of Medicine (IOM) DRI committee on calcium and vitamin
D in North America (1) as well as the UK and European Un-
ion authorities (5, 7–9) to establish dietary reference values
for vitamin D.

Several reports have shown that available 25(OH)D as-
says can yield markedly differing results (10–12), and this
has confounded international efforts to develop evidenced-
based guidelines (12). Importantly, the issue of international
standardization of serum 25(OH)D measurement has been
progressed by the Vitamin D Standardization Program
(VDSP), a collaborative initiative between the Office of Di-
etary Supplements of the NIH, the CDC, the National In-
stitute of Standards and Technology, and a number of the
national health surveys around the world (12, 13). The
VDSP has developed protocols for standardization of exist-
ing serum 25(OH)D data from national nutrition and
health surveys and cohort studies (14–17), which allow
for more valid between-country or -region comparisons
of vitamin D status and prevalence of vitamin D deficiency
(see below).

Serum 25(OH)D thresholds underpinning
international vitamin D recommendations and some
associated population surveillance estimates
The IOM DRI committee in the United States, with the use
of bone health as the basis for developing DRI for vitamin D,
suggested that people are at risk of deficiency at serum
25(OH)D concentrations <30 nmol/L; some, but not all, peo-
ple are potentially at risk of inadequacy at serum 25(OH)D
concentrations from 30 to #50 nmol/L; and that practi-
cally all people are vitamin D sufficient at concentrations
>50 nmol/L (1). In contrast, the Endocrine Society Task
Force on Vitamin D in the United States (18) suggests that
individuals should be identified as vitamin-D-deficient at a
cut-off level of 50 nmol/L serum 25(OH)D, and to maximize
the effect of vitamin D on calcium, bone, and muscle metab-
olism, serum 25(OH)D concentration should exceed 75 nmol/L.
A serum 25(OH)D threshold of 50 nmol/L in terms of ade-
quacy of vitamin D has been adopted by several European
agencies, including the European Food Safety Authority
(9) [for recent reviews, see Cashman (19) and Hayes and
Cashman (20)]. However, the Scientific Advisory Commit-
tee on Nutrition in the United Kingdom, after considering
the evidence, suggested that the risk of poor musculoskele-
tal health was increased at serum 25(OH)D concentrations
<25 nmol/L (5). There is universal agreement that we do
not wish to have individuals in the populations with circu-
lating 25(OH)D concentrations <25–30 nmol/L.

Estimates of the prevalence of vitamin D deficiency
[based on data of VDSP standardized serum 25(OH)D
<30 nmol/L] in representative population samples in the
United States (n = 15,652) (14), Canada (n = 11,336) (15),
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and Europe [n = 55,844; with the use of a collection of 14
nationally or regionally representative studies in the Euro-
pean Commission (EC)-funded ODIN (Food-Based Solu-
tions for Optimal Vitamin D Nutrition and Health
Through the Life Cycle) project; www.odin-vitd.eu] (16)
have been reported recently as 5.9%, 7.4%, and 13%, re-
spectively. As worrisome as these population estimates
are, they do not capture the differences in prevalence aris-
ing from factors such as age, seasonality, geographical loca-
tion, and ethnicity in these regions. For example, the
prevalence of serum 25(OH)D concentrations <30 nmol/L
increases from 8.2% in summer to 17.7% in winter in
the European sample (16) and from 3.3% in summer to
9.3% in winter in the United States (14). Across ethnic
groups, the prevalence of serum 25(OH)D concentrations
<30 nmol/L in non-Hispanic white, Hispanic, and non-
Hispanic black populations in the United States is 2.3%,
6.4%, and 24%, respectively (14). Young adults are at
high risk: in the United States, the prevalence of serum
25(OH)D concentrations <30 nmol/L in those aged
1–11 y is only 0.7%, whereas it is 8.2% in those aged
20–39 y (14). The average yearly population prevalence of
standardized serum 25(OH)D concentrations <50 nmol/L
in Europe, the United States, and Canada is 40.4%, 24.0%,
and 36.8%, respectively (14–16). Clearly, regardless of
which threshold is used, strategies for vitamin D defi-
ciency prevention are required (19). The typical average in-
take for populations within the EU and the United States
are generally ;3–8 mg/d on average, depending on the
country (21). There is a significant gap between the typical
intake in both European and North American populations
and the estimated average requirement (EAR) for vitamin
D intake, which was set by the IOM at 10 mg/d for those
aged $1 y (1).

Modeling the potential effect of ergocalciferol and 25
(OH)D in the food chain on vitamin D intake estimates
Although much of the vitamin D in the diet (including in
fortified foods and supplements) is in the form of cholecal-
ciferol, ergocalciferol and 25(OH)D are also present and
may be underestimated contributors to vitamin D nutri-
tional status.

25(OH)D in food and effect on vitamin D nutriture. 25
(OH)D is present in certain foods of animal origin, such as
meat, offal, eggs, and, to a lesser extent, fish [for reviews, see
Cashman (22) and Ovesen et al. (23)]. The total vitamin D
activity of these animal foods in food compositional tables in
the United Kingdom (and those in Denmark and Switzer-
land) accounts not only for the vitamin D content of the
food, but also for the content of the 25(OH)D multiplied
by a factor of 5 (24–26). However, the US food composition
database does not account for the 25(OH)D content of food
or apply an efficacy factor (27). Importantly, Taylor et al.
(28) performed some modeling to include overall food-
derived 25(OH)D content in intake estimates for US adults,
which showed that there was a potentially meaningful

increase (1.7–2.9 mg or 15–30% of the EAR) in vitamin D
intake estimates. However, there is some debate around the
use of the factor of 5, with alternate suggested factors ranging
from 1 to 9 [for reviews, see Cashman (22), Ovesen et al.
(23), and Heaney et al. (29)]. In a specifically designed
RCT aimed at addressing this question, consumption of
orally consumed synthetic 25-hydroxycholecalciferol [25(OH)D3]
was shown to be 5 times more effective than an equivalent
amount of cholecalciferol at improving the serum 25(OH)D
concentrations of older adults in winter (30).

Although the use of synthetic 25(OH)D as a food forti-
ficant has not been approved yet, its use in animal feeds for
certain species is permitted in Europe and the United
States (31, 32), and this can increase the content of
25(OH)D3 in the human food chain. For example, the ad-
dition of commercially available 25(OH)D3 to the diet of
hens has been shown to increase egg 25(OH)D3 content
(33–35). This approach of increasing the total vitamin D
content of foods of animal origin by increasing the dietary
vitamin D or 25(OH)D amount in animal feed has been
referred to as biofortification (19). Importantly, a recent
winter-based RCT of older adults (n = 55) showed that
weekly consumption of 7 vitamin D–biofortified eggs, pro-
duced by hens provided with feed containing 25(OH)D3

(or cholecalciferol) at the allowable maximum content,
prevented the typical decline in serum 25(OH)D concentra-
tion during winter and any incidence of vitamin D defi-
ciency (36). The control group in the study, who were
requested to consume up to a maximum of 2 commer-
cially available eggs/wk, had a significant decline in serum
25(OH)D over the 8 wk of winter, and 22% had vitamin
D deficiency [serum 25(OH)D <25 nmol/L] at the endpoint
(36).

Vitamin D2 in food and effect vitamin D nutriture. It has
been suggested that ergocalciferol is not very prevalent in
the human food chain. However, data from a number of re-
cent intervention studies as well from the National Adult
Nutrition Survey (NANS) in Ireland, a nationally represen-
tative sample of Irish adults, suggest that the majority of
subjects had measurable serum 25-hydroxyergocalciferol
[25(OH)D2] concentrations (37). Serum 25(OH)D2, un-
like 25(OH)D3, is not directly influenced by skin exposure
to UVB sunlight and thus has only dietary origins; how-
ever, quantifying dietary ergocalciferol is difficult because
of the limitations of food composition data. Cashman
et al. (37) used serum 25(OH)D2 concentrations in the
NANS participants to estimate the intake of ergocalciferol
with the use of a mathematical modeling approach. This
approach used recently published RCT data on the relation
between ergocalciferol intake and the responses of serum
25(OH)D2 concentrations in combination with data on se-
rum 25(OH)D2 concentration distribution in NANS. The
projected median intake of ergocalciferol ranged from 1.7
to 2.3 mg/d, suggesting that it may have an effect on nutri-
tional adequacy at a population level and thus warrants fur-
ther investigation (37).
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Modeling of serum 25(OH)D concentration to inform
approaches toward improving vitamin D status
Modeling UVB and dietary vitamin D data to predict serum
25(OH)D concentrations in the population and changes
arising from vitamin D fortification or supplementation.
Even accounting for potentially underestimated contribu-
tions of dietary-derived 25(OH)D3 and ergocalciferol to
overall vitamin D intake in some populations, it is unrealistic
to expect the habitual Western-style diet to supply vitamin D
at 10 mg/d [i.e., the EAR (1)] across the population. For
example, Roman Viñas et al. (38) showed that, of European
national nutrition surveys reporting vitamin D intake data
from 2000 on, 77–100% and 55–100% of adults (19–64 y of
age) and the elderly people (>64 y of age), respectively, had
intakes below the EAR. Consequently, there have been calls
for the use of vitamin D supplements as a means of correcting
low vitamin D intake and status in European populations,
and, in fact, vitamin D supplement use has been recommended
as national policy in certain countries, particularly for at-risk
population groups (39). Although vitamin D supplementation
has been shown to significantly improve vitamin D intake
across a variety of age and sex groups, with dose-dependent
increases in serum 25(OH)D concentrations (6), relying on
supplements is not an appropriate public health strategy to
increase intake across the population because supplements are
only effective for those who consume them, and uptake within
the population is generally too low to provide widespread
population protection, as is outlined elsewhere (40).
Based on the collective evidence from food-based RCTs,
novel food fortification approaches may represent the
best opportunity to increase the vitamin D supply to the
population (41, 42).

To enable food fortification strategies to be evidence-
based, mathematical models can be developed and used to
identify the appropriate amounts of food fortification as
well as potential vehicles to ensure adequacy of vitamin D
intake in population groups. Such mathematical models
can provide underpinning supportive data and complement
intervention-based trials (43). The models relate vitamin D
intake, arising from habitual food consumption as well
as from various food fortification scenarios, to serum
25(OH)D concentrations, while accounting for the contribu-
tion of UVB-induced synthesis in the skin to the distribution
of serum 25(OH)D concentrations within the population.
The UVB data that underpin these mathematical models
of population serum 25(OH)D concentrations can be
from direct ground-based measurements or can themselves
be modeled with the use of data from various satellites (44),
and on an annual basis, these data show clear and consistent
seasonal variation as well as striking latitudinal variation in
vitamin D–effective UVB availability (Figure 1). Such mod-
eled vitamin D–effective UVB availability over a typical
12 mo period has recently been mapped for several locations
in Europe, ranging from 358N to 698N, and clearly highlights
the considerable variability across the region as one moves
from southerly to northerly latitudes (45).

With the use of stepwise approaches, models based on
UVB availability data, hours of sunlight, and a key compo-
nent, namely, the dose-response of serum 25(OH)D to UVB
in adults, have been used to predict changes in population
serum 25(OH)D concentrations throughout the year in the
United Kingdom (46–48), Ireland (43), and Germany (49,
50), some of which have been validated against VDSP stan-
dardized serum 25(OH)D concentration data from nationally

FIGURE 1 Monthly modeled UVB doses effective for precholecalciferol synthesis (Jm22) in Tromsø, Norway (latitude 698N), Republic
of Ireland (latitude 51–548N), and Athens, Greece (latitude 388N). Values are means (2003–2012 data) 6 SDs, n = 28–31. Data are from
O’Neill et al. (45).
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representative nutrition surveys. By inclusion of one addi-
tional key component into a model, namely the dose-
response of 25(OH)D to increased vitamin D intake, one
can use the resulting integrated model to predict changes in
the population concentrations of 25(OH)D that may arise
from various dietary fortification approaches, while account-
ing for the seasonal variation in serum 25(OH)D concentra-
tions due to UVB availability. This was illustrated recently
when published estimates of the effect of 3 hypothetical vita-
min D food fortification scenarios on vitamin D intake in a
representative sample of Irish adults (51) were used in the
Irish model as a test and showed how mathematical models
can inform how vitamin D food fortification in various con-
structs may affect population serum 25(OH)D concentrations
and the prevalence of vitamin D deficiency (43).

Although the majority of the abovementioned models
have all been exclusively based on white populations,
recently, a model has been developed to account for the
more complex and relevant proportion of European popula-
tions at increased risk of vitamin D deficiency due to skin
color and ethnicity (48) (Figure 2). This is important be-
cause within Europe, North America, and other continents,
dark-skinned ethnic groups are worryingly at a much
increased risk of vitamin D deficiency than their white coun-
terparts (Table 1). Although many of the environmental fac-
tors that contribute to this elevated risk, such as latitude (52),

skin color (2), and cultural clothing practices (53) are not
modifiable, in contrast, an important modifiable factor is
the vitamin D supply in the diet and the obvious, albeit com-
plex, solution is to develop strategies to address the low vi-
tamin D intake in ethnic subgroups, thereby preventing
deficiency safely throughout the population (48). Such a tai-
lored, dark-skinned ethnic group mathematical model
presents a viable approach to estimating changes in the pop-
ulation concentrations of 25(OH)D that may arise from var-
ious dietary fortification approaches and that are cognizant
of appropriate food vehicles for these ethnic subgroups.

Novel food-based solutions for addressing low
vitamin D status
As outlined above, there is a need for sustainable food-based
strategies to bridge the gap between current and recommen-
ded intakes of vitamin D to minimize the prevalence of vi-
tamin D deficiency (4, 19–22). While acknowledging the
valuable contribution that vitamin D–fortified milk makes
to vitamin D intake among consumers, particularly children,
and the continued need for fortification of milk and other
dairy products (54), strategic approaches to fortification, in-
cluding biofortification of a wider range of foods, has the
potential to increase vitamin D intake in the population
and minimize the prevalence of low serum 25(OH)D concen-
tration without increasing the risk of excessive dosing (4, 40).

FIGURE 2 Modeled changes in serum 25(OH)D concentration over a typical year for white adults (white) and adults of Asian or black
ethnic background (dark) in the United Kingdom with the use of daily mean UVB availability estimates [modified from O’Neill et al.
(48)]. Squares (and associated error bars) are monthly geometric means 6 95% CIs of measured serum 25(OH)D concentrations for
white adults (18–70 y of age) in the NDNS (n = 35–101/mo) in the United Kingdom. Triangles (and associated error bars) are geometric
means 6 95% CIs of measured serum 25(OH)D concentrations for each season in the adults (18–70 y of age) of Asian or black ethnic
background in the NDNS (n = 9–27/season). Seasons were used in place of monthly geometric means because of the much lower
sample number for Asian or black ethnic adults and were defined as follows: winter (December, January, and February), spring (March,
April, and May), summer (June, July, and August), and autumn (September, October, and November), with each triangle marker placed
at the midpoint of each season. NDNS, National Diet and Nutrition Survey; 25(OH)D, 25-hydroxyvitamin D.
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In terms of traditional fortification of foods, bread and or-
ange juice have also been shown to be effective in improving
vitamin D status in a number of RCTs (55–58). Beyond these
foods, eggs, beef, pig and sheep meat, poultry, milk, and cul-
tured fish are potentially important targets for vitamin
D–biofortified foods (20). In addition, the use of the vitamin
D–fortified, reduced-fat cheese is worthy of consideration as
an additional sustainable food-based strategy, beyond tradi-
tional dairy foods. For example, 2 systematic reviews exam-
ining the effectiveness of consuming vitamin D–fortified
products in raising serum 25(OH)D concentrations in an
RCT setting (41, 42) highlighted the fact that most studies
have examined the effectiveness of vitamin D–fortified milk
and yogurt, and there have been limited studies exploring
the effectiveness of vitamin D–fortified cheese. Even with
the studies that have been carried out with vitamin D–fortified
cheese, the results have been quite mixed. This may relate to
the quality of some of these studies, as suggested by Black
et al. (41), as a limitation, but also to the fact that fortifica-
tion of cheese with vitamin D has certain technological con-
siderations, particularly for reduced-fat cheese varieties (59).

A recent RCTwithin the EC-funded ODIN project showed
how the daily consumption of 60 g of cholecalciferol-fortified,
reduced-fat Gouda cheese could counterbalance the expected
decrease in serum 25(OH)D concentrations during 8 wk of
winter in postmenopausal women (60), a group at risk of
low vitamin D status and the associated risks of osteoporosis
and related fractures. The study showed that although the
average serum 25(OH)D concentration increased signifi-
cantly (by 5.1 nmol/L) in the cholecalciferol-fortified cheese
group (receiving an additional dose of 5.7 mg of cholecal-
ciferol), it decreased significantly (by 4.6 nmol/L) in the
control group, as would be expected in winter in indi-
viduals not taking additional vitamin D (habitual intake
;2 mg/d). None of the women in the cholecalciferol-fortified
cheese group were vitamin D deficient [defined as serum
25(OH)D concentration <30 nmol/L] after the 8-wk study

compared with 41% of women in the control group, a signif-
icant difference (P = 0.001) (60). Evidence of the effective-
ness of food fortification approaches from RCTs that
evaluate their effect on reducing the prevalence of vitamin
D deficiency in the populations studied is a key priority
(4), and the positive data from these recent RCTs
provides a high level of evidence in relation to vitamin D–
fortified, reduced-fat cheese (60) and vitamin D–biofortified
eggs (36) among other potential food-based solutions to vi-
tamin D deficiency. Data from these and other RCTs also
underpin dietary vitamin D modeling analysis based on
data from nationally representative dietary surveys, which
in turn, when used in the mathematical models of popula-
tion serum 25(OH)D concentration, can provide in silico
projections of how these food interventions may affect the
prevalence of vitamin D deficiency in the population. Such
work is currently underway in the EC-funded ODIN pro-
ject (61). Preliminary modeling of national food intake
data from 4 European countries within the ODIN project
has shown that consumption of vitamin D–biofortified
foods together with traditional dairy fortification does not
put the population at risk in terms of breaching the vitamin
D tolerable upper intake level for adults [100 mg/d (1)], even
for those taking vitamin D supplements containing 10 or
25 mg/d (M Kiely, ODIN, personal communication, 2017).
This is of importance in light of the high percentage of
some populations taking vitamin D–containing supple-
ments (62). Increased food fortification together with
high-dose vitamin D supplements (i.e., 50 mg/d) led to
;20% of individual breaching the Tolerable Upper Intake
Level (M Kiely, ODIN, personal communication, 2017).

Dairy-based foods are good vehicles for vitamin D forti-
fication not only because dairy foods are a major part of the
diet for a high proportion of individuals in many, but clearly
not all, population subgroups, but also as the bioavailability of
vitamin D from dairy-based foods has been shown to be good
in RCTs (41, 42, 60, 63). In addition, vitamin D may work

TABLE 1 Prevalence of vitamin D deficiency in European dark-skinned ethnic groups and their white counterparts1

Country, population
subgroup

Study
(reference)

Prevalence of serum 25(OH)D
concentration\30 nmol/L, %

Finland
Dark-skinned ethnic Finnish Migrant Health and Wellbeing Study (16) 28.0 Somali (n = 364)

50.4 Kurdish (n = 500)
White Health 2011 (17) 0.4 (n = 4102)

United Kingdom National Diet and Nutrition Survey [4-y rolling program (16)]
United Kingdom dark-skinned ethnic 35.7 Black (n = 28)

59.6 Asian (n = 52)
White 19.6 (n = 1359)

Norway (Oslo) The Oslo Health Study (17)
South Asian (Pakistani) immigrant 64.8 (n = 176)
White native, adult 1.3 (n = 866)

United States Nutrition and Health Examination Survey 2007–2010 ($1 y
of age) (14)

Non-Hispanic white 2.3 (n = 6711)
Hispanic 6.4 (n = 5138)
Non-Hispanic black 24.0 (n = 2997)

1 Prevalence estimates are based on Vitamin D Standardization Program standardized serum 25(OH)D concentration data. n ¼ total population sample. 25(OH)D,
25-hydroxyvitamin D.
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synergistically with dairy-based nutrients to improve bone
health. For example, globally, an adequate supply of both cal-
cium and vitamin D form part of the nutritional recommen-
dations in relation to ensuring good bone health. The
importance of both an appropriate dietary calcium intake
and adequate serum 25(OH)D concentrations for skeletal health
(64) has been confirmed by several meta-analyses (1, 65, 66).

Riboflavin and its flavoenzymes may play a role in the bi-
osynthesis of vitamin D [for a review, see Pinto and Cooper
(67)]. Deficits in riboflavin intake and metabolism as well as
defects in flavoenzyme activity result in marked structural
alterations within the skeletal and central nervous systems
similar to those of disorders (inborn errors) in the biosyn-
thetic pathways that lead to cholesterol, steroid hormones,
vitamin D, and their metabolites (67). A high protein intake
via the production of the osteotropic hormone, insulin-like
growth factor-I (IGF-I), which is important for bone forma-
tion, has been shown to positively interact with vitamin D
metabolism. High circulating IGF-I concentration may be
a contributory factor for the enhanced renal production of
1,25-dihydroxyvitamin D (68). The synergy between protein
and vitamin D was confirmed in a retrospective analysis with
the use of data from a 3-y RCT with calcium and vitamin D
supplementation (69). The 342 healthy people (aged $65 y)
who completed the trial were stratified based on tertiles of pro-
tein intakes (as assessed by FFQ), and this analysis revealed
an additional effect of high protein intake on top of the vi-
tamin D and calcium intervention for bone mineral density
(BMD) at the femoral neck and for total body BMD (69).

Finally, there may be synergy between vitamins D and K.
In a case-control study, Torbergsen et al. (70) examined the
possible synergistic effect of vitamins D and K. They found
that circulating phylloquinone and 25(OH)D, independently
and synergistically, were associated with a lower risk of hip
fracture in elderly subjects (70). In addition, 2 RCTs showed
that vitamin K in combinationwith vitamin D was better than
either vitamin alone in terms of effects on BMD of the lumbar
spine (71) and of the ultradistal radius (72). Vitamin D may
also work synergistically with other micronutrients, such as
vitamin A, but that is beyond the scope of the present review
and has been discussed elsewhere (73).

Thus, at a mechanistic level, interactions between vitamin
D and calcium, as well as other micronutrients, may have
implications for the biosynthesis and regulation of circulat-
ing 25(OH)D, but also directly for bone health outcomes
(1, 64, 70–75). Milk and dairy are known for their bone-
augmenting qualities, but also contain the abovementioned
nutrients capable of interacting with vitamin D. Therefore,
we reviewed the literature in a systematic way with a view to-
ward substantiating the synergy of vitamin D with dairy nu-
trients in relation to bone in a RCT setting and, in so doing,
providing additional evidence that dairy foods are a good
choice for vitamin D fortification. The systematic literature
review on vitamin D and dairy nutrients in relation to bone
(the details of the search terms used are available from 2 of
the authors, EGHMvdH and RJWS, on request) identified 5,
2, 0, 1, and 2 RCTs in which vitamin D with at least calcium,

vitamin K, protein, zinc, or phosphorus, respectively, were
used as the intervention. Only 2 RCTs changed either the vi-
tamin D or calcium intake without changing the intake of
other nutrients. One study of Chinese adolescents compared
an intervention with calcium-fortified dairy supplying
245 mg/d of calcium with or without additional vitamin D
(3.3 mg/d). The vitamin D enrichment resulted in lower
concentrations of bone-specific alkaline phosphatase (a
marker of bone formation) (76) and more favorable changes
in BMD and bone mineral content (77, 78). The effects were
mainly on the lower limbs (79). Another RCT, which kept
vitamin D constant at 5 mg/d and changed the calcium in-
take (1110 compared with 655 mg/d), reported an enhanced
bone mineral gain at the hip sites in girls, but had no ob-
servable effect in boys (80). Three studies in elderly women,
aged 61–99 y, increased the daily calcium concentrations
[i.e., an extra 66 mg (81) to 240 mg/d (82, 83)] as well as
vitamin D via fortified soft cheese or yogurt. The addition
of 10 mg cholecalciferol to yogurt resulted in decreases in 2
markers of bone resorption in older women in a community-
dwelling home (83) or elderly institutionalized women (82).
A prospective, crossover RCT of institutionalized women
showed that a soft, plain cheese fortified with 2.5 mg chole-
calciferol, compared with a nonfortified equivalent cheese,
led to an increase in serum IGF-I and significant de-
creases in markers of bone resorption (81). These studies
confirm a synergistic role of vitamin D and calcium in
terms of reducing the rate of bone resorption and turnover,
at least in women with low intake of calcium or vitamin D
status. An increased rate of bone turnover in adults may
be a risk factor for fracture (84) because it exacerbates
bone loss (85).

Two studies included vitamin K in addition to vitamin D
in a dairy matrix (86). A short-term study (16 wk) of young
women aged 20–35 y showed no additional benefit of phyl-
loquinone added to milk, which was fortified with calcium
and vitamin D, on the rate of bone turnover (86), whereas
in a 12-mo RCTof postmenopausal women, daily consump-
tion of dairy foods containing 800 mg calcium and 10 mg vi-
tamin D plus 100 mg menaquinone or phylloquinone was
favorable for lumbar spine BMD and a marker of bone re-
sorption as compared with dairy fortified with calcium
and vitamin D only (87).

There were 3 studies on dairy foods containing vitamin D
with different amounts of phosphorus or zinc (88–90), but
the findings were such that it was not possible to draw firm
conclusions on the possible interaction of vitamin D with
zinc or phosphorus in terms of bone health outcomes.

Interactions between seasons and supplements on
vitamin D status and health
As mentioned above, vitamin D can be provided by UVB
sunlight and dietary sources, including fortified foods and
vitamin D supplements. The main differences between the
2 sources are summarized in Table 2, and the relative con-
tribution of each source on an individual’s vitamin D status
depends very much on their lifestyle (91).
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As summer UVB-rich sunlight is the major contributor to
vitamin D status for most of the population who do not cover
up when outside, the associations between vitamin D status
and a reduced risk of chronic disease (e.g., cancer, cardiovas-
cular, and autoimmune diseases) are confounded by being
outside and being exposed to sunlight. Not only are those
who are unwell more likely to spend time indoors, but there
may be health benefits of light that are independent of vita-
min D. To tease out the effect of vitamin D from sunlight,
one needs a study specifically designed to account for the ef-
fect of season. The Vitamin D and Cardiovascular risk study
was a 1-y RCT in Scotland (latitude 578N) (92). All 305 female
participants (aged 60–70 y) started at the same time between
January and March, the point in the year when serum
25(OH)D is at its lowest (mean 6 SD: 34 6 15 nmol/L)
and were assessed every 2 mo. The study found that serum
25(OH)D in the placebo group went up in the summer
to a mean peak of 55 6 18 nmol/L and returned to 32 6
15 nmol/L by the following winter, whereas serum 25(OH)D
reached plateaus for the groups receiving daily vitamin D
(68 6 16 nmol/L for 400 IU/d; 77 6 18 nmol/L for
1000 IU/d) (data are means 6 SDs). The small incremental
differences between the 3 groups in summer compared with
the large gap between placebo and both treatment groups
in winter shows that there is interaction between light-
derived vitamin D and oral vitamin D, i.e., the 2 sources
are not additive.

The study found no change in markers of cardiovascular
risk (total, HDL, and LDL cholesterol, TGs, apoA-1, and
vitamin B-100), insulin resistance (homeostatic model as-
sessment), or inflammation (high-sensitivity C-reactive
protein, IL-6, and soluble intracellular adhesion molecule-
1) either between the treatment groups or during the year,
with one exception (92). Blood pressure went down in sum-
mer (mean 6 SD systolic blood pressure decreased by
6.6 6 10.8 mm Hg) and went back up in winter for all
3 groups, indicating that there are vascular effects of seasons
that are independent of circulating 25(OH)D. BMD was a
secondary outcome (93). Only the group taking the
1000-IU/d dose of vitamin D showed no hip bone loss com-
pared with the mean 0.6% loss seen in both the 400-IU/d and
placebo groups. In this case, the bone benefits do not appear
to be directly linked to change in 25(OH)D concentration.

There is evidence to suggest that skin autoimmune con-
ditions may be affected by UVB exposure through additional

mechanisms, independent from the effects of light-derived
vitamin D. A small study of outpatients undergoing UVB
therapy, during which the UVB dose differed throughout
treatment according to resistance to erythema, showed
that the increase in the number of regulatory T cells was re-
lated to the change in circulating 25(OH)D, whereas the de-
crease in cytokine IL-10 was associated with the dose of UVB
the patient received (94).

Conclusions
Although circulating 25(OH)D is a robust and reliable
marker of vitamin D status, standardization of serum
25(OH)D data are extremely important in terms of within-
and between-country comparisons of the prevalence of vita-
min D deficiency. By using standardized serum 25(OH)D
data and depending on the 25(OH)D threshold selected
(30 or 50 nmol/L), vitamin D deficiency in Europe and
North America can be classified as a mild (5–19.9%) or se-
vere (>40%) public health problem based on WHO criteria
(95). Regardless of which threshold is used, strategies for vi-
tamin D deficiency prevention are required. Fortification,
including biofortification, of a wider range of foods is likely
to have the potential to increase vitamin D intakes across the
population distribution and, in so doing, minimize the prev-
alence of vitamin D deficiency. Recent RCTs provide high-
level evidence in relation to vitamin D–fortified, reduced-fat
cheese and vitamin D–biofortifed eggs (36, 60). Evidence
of the effectiveness of other food fortification approaches
from RCTs that evaluate their effect on reducing the preva-
lence of vitamin D deficiency in the populations studied is
undoubtedly a key priority. The interactions between vita-
min D and other micronutrients in dairy-based foods in
relation to beneficial effects on bone underscore their im-
portance as vitamin D–fortified foods. Dietary modeling
analysis based on data from nationally representative dietary
surveys can provide in silico projections of how these food-
based vitamin D interventions may affect the degree of vita-
min D intake inadequacy in the population. Furthermore,
although we acknowledge their simplicity and limitations,
computational models can inform vitamin D food fortifica-
tion strategies by assessing their potential effect on popula-
tion serum 25(OH)D concentrations and the prevalence of
vitamin D deficiency in the absence and presence of suffi-
cient UVB availability. Those computational models, which
can account for ethnic dark-skinned subpopulation groups,

TABLE 2 Key differences in sunlight and dietary supply as contributors to vitamin D nutritional status

Sunlight Diet

UVB is only available seasonally at higher latitude Available year-round
UVB is only available at higher latitude from 1–6 mo of the
year at latitudes ranging from 37–608N, respectively: no
vitamin D can be made in the skin1

Few foods naturally contain vitamin D

To make vitamin D, a person needs to be outside and expose
the skin to sunlight

Very little vitamin D is obtained from most normal diets

A person cannot overdose on sunlight-derived vitamin D
(but cancer risk is increased)

Vitamin D supplements make a significant contribution to
vitamin D status

A person can overdose if they take large amounts orally
(high-dose vitamin D supplements for long periods)

1 Data are from O’Neill et al. (45).
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are particularly important because these subpopulation
groups are at a much higher risk of vitamin D deficiency
than their white counterparts. Such modeling of nationally
representative vitamin D intake estimates, UVB availability,
and ultimately, population serum 25(OH)D concentration
can contribute to our understanding of population vitamin
D status and means of improving such status. Finally, there
is emerging evidence that there may be interactions between
sunlight and oral supply of vitamin D, such that seasonal
health benefits could be independent of vitamin D status,
an area deserving of future research.
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